Organic Solar Cell Efficiency Tripled Thanks To Nanostructure Sandwich

December 6th, 2012 | Posted by paul in Uncategorized

From Princeton University:

Princeton researchers have found a simple and economical way to nearly triple the efficiency of organic solar cells, the cheap and flexible plastic devices that many scientists believe could be the future of solar power.

The researchers, led by electrical engineer Stephen Chou, were able to increase the efficiency of the solar cells 175 percent by using a nanostructured “sandwich” of metal and plastic that collects and traps light.

Chou, the Joseph C. Elgin Professor of Engineering, said the research team used nanotechnology to overcome two primary challenges that cause solar cells to lose energy: light reflecting from the cell, and the inability to fully capture light that enters the cell.

organic-solar-triple-efficiency1With their new metallic sandwich, the researchers were able to address both problems. The sandwich — called a subwavelength plasmonic cavity — has an extraordinary ability to dampen reflection and trap light. The new technique allowed Chou’s team to create a solar cell that only reflects about 4 percent of light and absorbs as much as 96 percent. It demonstrates 52 percent higher efficiency in converting light to electrical energy than a conventional solar cell.

That is for direct sunlight. The structure achieves even more efficiency for light that strikes the solar cell at large angles, which occurs on cloudy days or when the cell is not directly facing the sun. By capturing these angled rays, the new structure boosts efficiency by an additional 81 percent, leading to the 175 percent total increase.

The physics behinorganic-solar-triple-efficiency2d the innovation is formidably complex. But the device structure, in concept, is fairly simple.

The top layer, known as the window layer, of the new solar cell uses an incredibly fine metal mesh: the metal is 30 nanometers thick, and each hole is 175 nanometers in diameter and 25 nanometers apart. (A nanometer is a billionth of a meter and about one hundred-thousandth the width of human hair). This mesh replaces the conventional window layer typically made of a material called indium-tin-oxide (ITO)

facebooktwittergoogle_plusredditpinterestlinkedinmail

You can follow any responses to this entry through the RSS 2.0 You can leave a response, or trackback.

Leave a Reply

Your email address will not be published.